<table>
<thead>
<tr>
<th></th>
<th>Brief Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>An Introduction to Genetics 1</td>
</tr>
<tr>
<td>2</td>
<td>Mitosis and Meiosis 15</td>
</tr>
<tr>
<td>3</td>
<td>Mendelian Genetics 36</td>
</tr>
<tr>
<td>4</td>
<td>Modification of Mendelian Ratios 58</td>
</tr>
<tr>
<td>5</td>
<td>Sex Determination and Sex Chromosomes 83</td>
</tr>
<tr>
<td>6</td>
<td>Quantitative Genetics 102</td>
</tr>
<tr>
<td>7</td>
<td>Chromosome Mutations: Variation in Number and Arrangement 120</td>
</tr>
<tr>
<td>8</td>
<td>Linkage and Chromosome Mapping in Eukaryotes 141</td>
</tr>
<tr>
<td>9</td>
<td>Mapping in Bacteria and Bacteriophages 166</td>
</tr>
<tr>
<td>10</td>
<td>DNA Structure and Analysis 187</td>
</tr>
<tr>
<td>11</td>
<td>DNA Replication and Synthesis 212</td>
</tr>
<tr>
<td>12</td>
<td>The Genetic Code and Transcription 232</td>
</tr>
<tr>
<td>13</td>
<td>Translation and Proteins 253</td>
</tr>
<tr>
<td>14</td>
<td>Gene Mutation, DNA Repair, and Transposable Elements 278</td>
</tr>
<tr>
<td>15</td>
<td>Regulation of Gene Expression 306</td>
</tr>
<tr>
<td>16</td>
<td>Recombinant DNA Technology 326</td>
</tr>
<tr>
<td>17</td>
<td>Chromosome Structure and DNA Sequence Organization 348</td>
</tr>
<tr>
<td>18</td>
<td>Genomics and Proteomics 365</td>
</tr>
<tr>
<td>19</td>
<td>Biotechnology and Its Implications for Society 392</td>
</tr>
<tr>
<td>20</td>
<td>Genes and Development 415</td>
</tr>
<tr>
<td>21</td>
<td>The Genetic Basis of Cancer 431</td>
</tr>
<tr>
<td>22</td>
<td>Population Genetics 450</td>
</tr>
<tr>
<td>23</td>
<td>Genetics and Evolution 472</td>
</tr>
<tr>
<td>24</td>
<td>Conservation Genetics 495</td>
</tr>
</tbody>
</table>
5 Sex Determination and Sex Chromosomes 83
 5.1 Sexual Differentiation and Life Cycles 84
 5.2 X and Y Chromosomes: Early Studies 87
 5.3 Chromosome Composition and Sex Determination in Humans 88
 5.4 Sexual Differentiation in Humans 91
 5.5 The Sex Ratio in Humans 92
 5.6 The X Chromosome and Dosage Compensation 92
 5.7 Chromosome Composition and Sex Determination in Drosophila 95
 5.8 Temperature Variation and Sex Determination in Reptiles 97
 Male Sterility in Maize—Extrachromosomal Inheritance 98
 Chapter Summary 98
 Insights and Solutions 99
 Key Terms 99
 Problems and Discussion Questions 100
 Selected Readings 100

6 Quantitative Genetics 102
 6.1 Quantitative Inheritance 103
 6.2 Analysis of Polygenic Traits 108
 6.3 Heritability 110
 6.4 Mapping Quantitative Trait Loci 113
 Insights and Solutions 116
 Chapter Summary 117
 Key Terms 117
 Problems and Discussion Questions 117
 Selected Readings 119

7 Chromosome Mutations: Variation in Number and Arrangement 120
 7.1 Variation in Chromosome Number:
 An Overview 121
 7.2 Nondisjunction: The Origin of Aneuploidy 121
 7.3 Monosomy 121
 7.4 Trisomy 123
 7.5 Polyploidy and Its Origins 125
 7.6 Variation in Chromosome Structure and Arrangement: An Overview 128
 7.7 Deletions 128
 7.8 Duplications 128

8 Linkage and Chromosome Mapping in Eukaryotes 141
 8.1 Linkage Versus Independent Assortment 142
 8.2 Incomplete Linkage, Crossing Over, and Chromosome Mapping 143
 8.3 Mapping in Drosophila and Maize 148
 8.4 The Accuracy of Mapping Experiments 153
 8.5 The Genetic Map of Drosophila 155
 8.6 Somatic Cell Hybridization and Human Gene Mapping 155
 8.7 Haploid Organisms in Linkage and Mapping Studies 156
 8.8 Other Aspects of Genetic Exchange 157
 8.9 Did Mendel Encounter Linkage? 160
 Why Didn't Gregor Mendel Find Linkage? 160
 Chapter Summary 160
 Insights and Solutions 161
 Key Terms 163
 Problems and Discussion Questions 163
 Selected Readings 165

9 Mapping in Bacteria and Bacteriophages 166
 9.1 Bacterial Mutation and Growth 167
 9.2 Genetic Recombination in Bacteria:
 Conjugation 168
 9.3 Rec Proteins and Bacterial Recombination 173
 9.4 F Factors and Plasmids 174
 9.5 Bacterial Transformation 175
 9.6 The Genetic Study of Bacteriophages 176
 9.7 Transduction: Virus-Mediated Bacterial DNA Transfer 179
 9.8 Intergenic Recombination and Mapping in Bacteriophages 180
 Chapter Summary 182
 Insights and Solutions 184
 Key Terms 184
 Problems and Discussion Questions 185
 Selected Readings 186

 Genetics, Technology, and Society 183
 Eradicating Cholera: Edible Vaccines
DNA Structure and Analysis 187
10.1 Characteristics of the Genetic Material 188
10.2 The Genetic Material: Early Studies 189
10.3 Evidence Favoring DNA in Bacteria and Bacteriophages 189
10.4 Indirect and Direct Evidence Favoring DNA in Eukaryotes 194
10.5 RNA as the Genetic Material in Some Viruses 195
10.6 Structural Analysis of DNA 196
10.7 The Watson–Crick Model 200
10.8 The Structure of RNA 202
10.9 Hydrogen Bonds and the Analysis of Nucleic Acids 203
10.10 Electrophoresis of Nucleic Acids 205
Chapter Summary 206
Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid 207
Key Terms 209
Insights and Solutions 209
Problems and Discussion Questions 210
Selected Readings 211

Genetics, Technology, and Society 208
Genetics and Society in the New Millennium

DNA Replication and Synthesis 212
11.1 The Mode of DNA Replication 213
11.2 Synthesis of DNA in Microorganisms 217
11.3 DNA Synthesis: A Model 220
11.4 A Coherent Model of DNA Synthesis 222
11.5 Genetic Control of Replication 223
11.6 Eukaryotic DNA Synthesis 223
11.7 DNA Replication, Telomeres, and Telomerase 224
11.8 DNA Recombination 226
Chapter Summary 229
Key Terms 229
Insights and Solutions 230
Problems and Discussion Questions 230
Selected Readings 231

Genetics, Technology, and Society 228
Telomerase: The Key to Immortality?

The Genetic Code and Transcription 232
12.1 Characteristics of the Genetic Code 233
12.2 Initial Insights into the Code 233
12.3 Deciphering the Code 234
12.4 The Coding Dictionary 238
12.5 Confirming the Code Using Phage MS2 239
12.6 The Universality of the Genetic Code 239
12.7 Transcription: DNA-Dependent RNA Synthesis 240
12.8 RNA Polymerase 241
12.9 Transcription in Eukaryotes 242
12.10 Intervening Sequences and Split Genes 244
12.11 RNA Editing 247
Chapter Summary 249
Key Terms 250
Insights and Solutions 250
Problems and Discussion Questions 251
Selected Readings 252

Genetics, Technology, and Society 248
Antisense Oligonucleotides: Attacking the Messenger

Translation and Proteins 253
13.1 Translation: Components Essential to Protein Synthesis 254
13.2 Translation: The Process 257
13.3 Translation in Eukaryotes 260
13.4 Proteins, Heredity, and Metabolism 261
13.5 The One-Gene:One-Enzyme Hypothesis 263
13.6 One-Gene:One-Polypeptide Chain 265
13.7 Collinearity Between Genes and Proteins 267
13.8 Protein Structure and Biological Diversity 267
13.9 Posttranslational Modification of Proteins 270
13.10 Protein Function 271
13.11 Protein Domains and Exon Shuffling 272
Chapter Summary 274
Key Terms 274
Insights and Solutions 275
Problems and Discussion Questions 275
Selected Readings 276

Genetics, Technology, and Society 273
Mad Cows and Heresies: The Prion Story

Gene Mutation, DNA Repair, and Transposable Elements 278
14.1 Classification of Mutations 279
14.2 Detection of Mutation 280
14.3 Spontaneous Mutation Rate 283
14.4 The Molecular Basis of Mutation 283
14.5 Ultraviolet and High-Energy Radiation 286
14.6 Mutations in Humans: Case Studies 288
14.7 Detection of Mutagenicity: The Ames Test 290
14.8 Counteracting DNA Damage: Repair Systems 291
14.9 Site-Directed Mutagenesis 295
14.10 Knockout Genes and Transgenes 296
14.11 Transposable Genetic Elements 296
Chapter Summary 301
Key Terms 302
Insights and Solutions 303
Problems and Discussion Questions 303
Selected Readings 304

Genetics, Technology, and Society 300
Chernobyl's Legacy

15

Regulation of Gene Expression 306
15.1 Genetic Regulation in Prokaryotes: An Overview 307
15.2 Lactose Metabolism in E. coli: An Inducible System 307
15.3 Tryptophan Metabolism in E. coli: A Repressible Gene System 313
15.4 Genetic Regulation in Eukaryotes: An Overview 314
15.5 Regulatory Elements, Transcription Factors, and Eukaryotic Genes 315
15.6 Gene Regulation by Steroid Hormones 320
15.7 Posttranscriptional Regulation of Gene Expression 321
Chapter Summary 322
Key Terms 322
Insights and Solutions 323
Problems and Discussion Questions 323
Selected Readings 324

16

Recombinant DNA Technology 326
16.1 Recombinant DNA Technology: An Overview 327
16.2 Constructing Recombinant DNA Molecules 327
16.3 Cloning in E. coli Host Cells 331
16.4 Cloning in Eukaryotic Host Cells 331
16.5 Cloning Without Host Cells: The PCR Reaction 333
16.6 Libraries Are Collections of Cloned Sequences 334
16.7 Recovering Cloned Sequences from a Library 336
16.8 Characterizing Cloned Sequences 337
16.9 DNA Sequencing: The Ultimate Way to Characterize a Clone 341
Chapter Summary 344
Key Terms 344
Insights and Solutions 346
Problems and Discussion Questions 346
Selected Readings 347

Genetics, Technology, and Society 345
DNA Fingerprints in Forensics: The Case of the Telltale Palo Verde

17

Chromosome Structure and DNA Sequence Organization 348
17.1 Viral and Bacterial Chromosomes 349
17.2 Mitochondrial and Chloroplast DNA 351
17.3 Specialized Chromosomes 353
17.4 Organization of Chromatin in Eukaryotes 355
17.5 DNA Sequence Organization in Eukaryotes 358
17.6 The Eukaryotic Genome: What Proportion Encodes Genes? 362
Chapter Summary 362
Key Terms 362
Insights and Solutions 363
Problems and Discussion Questions 363
Selected Readings 364

18

Genomics and Proteomics 365
18.1 Genomic Analysis 367
18.2 Anatomy of Prokaryotic Genomes 369
18.3 Anatomy of Eukaryotic Genomes 373
18.4 Genome Evolution 378
18.5 Comparative Genomics: Multigene Families 381
18.6 Proteomics 386
Chapter Summary 388
Key Terms 390
Insights and Solutions 390
Problems and Discussion Questions 390
Selected Readings 391

Genetics, Technology, and Society 389
Completion of the Human Genome Project: The Hype and the Hope
Contents

24 Conservation Genetics 495

24.1 Genetic Diversity 496
24.2 Population Size and Species Survival 499
24.3 Genetic Effects of Decreased Population Size 500
24.4 Genetic Erosion: The Loss of Genetic Diversity 502
24.5 Conservation of Genetic Diversity 503

Chapter Summary 505
Key Terms 507
Insights and Solutions 507
Problems and Discussion Questions 507
Selected Readings 508

Genetics, Technology, and Society 506

Gene Pools and Endangered Species: The Plight of the Florida Panther

Appendix
Answers to Selected Problems A-1
Glossary G-1
Index I-1